集成电路生产过程中检测和描述射频滤波器特性的新方法

分享到:

作者:测试开发经理Peter Sarson、市场经理Andreas Wild


集成电路的开发人员再也不能如以前那般准确地预测未来了。 理论上来说,一个提交生产的新集成电路设计会有明确的规格,其性能特征也会有一个准确的描述。但实际情况并非如此,通常生产过程开始之后,开发人员还是会对设计增加一些新的要求。

集成电路生产团队一般都会想方设法满足开发人员的这些后续要求。但是,他们还是会碰到很棘手的情况,比如,开发人员通常会要求改变由生产测试部门制定的射频滤波器的特性描述方法。这会引起测试软件代码的一系列变化。这样不仅会耽误测试进程,延缓芯片设计定型的进度,并且有可能会使测试代码产生错误,因为整个生产团队经常处于加快制造过程的巨大压力下,可能没有足够的时间用于全面调试测试代码。

因此,奥地利微电子公司的测试工程团队试图研究一种新的方法来对射频滤波器进行特征描述,以此解决上述问题。团队的策略是开发一个标准的测试程序,它可同时用于特征描述和生产过程中。此外,该程序还可进行一些简单的修改,以适应各种不同规格的集成电路的要求。这个新的标准程序被放置在一个测试代码库中,使基本的测试IP能得到反复再利用。

测试团队选择的方法是使用一个线性调频器,扫描滤波器的频率范围,通过单次测量可描述滤波器的特性。

集成电路1
图1:线性调频

团队考虑到使用多频声来描述滤波器特性的可能性。但是,该方法并不适合输入功率灵敏度较低的设备。如果要使用多频声,各个频率分量必须根据频率总数被划分,以此保证整体的峰值系数低于最大输入功率。如果不这么做,单个频率之间会相互影响引起互调失真,干扰频率扫描的结果。

如何构建一个线性调频器

在一个线性调频中,信号的瞬时频率呈线性增加趋势,并且没有跳频(如图1所示)。但考虑到任意波形发生器(AWG)中有限的内存大小,测试工程师必须构建一个离散形的线性调频器。线性调频的公式如下:f(t) = f0 + kt。其中,f0代表起始频率(时间t=0),k代表频率增加率或调频转换速率。

当线性调频的扫描过程完成并且获得扫描结果后,该新方法还要求对集成电路设计者想要进行特征描述的滤波器进行关键参数的提取:提取幅值响应,即过滤器的3dB点、10dB点以及滤波器的带宽。有时,也需要提取其它一些参数,如相位响应和群延迟。


为了在数字信号处理器中构建线性调频信号,我们必须了解以下这些参数:
• 测量带通滤波器的转角频率时应该达到怎样的精确度?
• 测量设备中的哪些特性有利于测量工作的展开?存储深度、最大采样频率,还是波形拼接?
• 滤波器的转角频率和带宽是多少?

随着最新测试码开发工具中syntax的出现,在数字信号处理器中构建线性调频波形图变得非常简单。通常情况下,syntax提供一个选项,它可根据样本数、采样频率、数组大小、相位延迟以及Sinx/x 修正,使用内置函数构建一个正弦波形。通过将该测试码放入一个回路,并线性地增加bin数,将会产生一组呈线性增加趋势的音频波形。只要根据取样原理确保该过程的连贯性,那么这些波形就会拼接在一起,并形成一个离散的线性调频信号。

若没有产生单个波形的内置函数,那么我们可以使用取样原理。取样原理要求在数组中M呈线性增加,并且要求快速傅里叶变换呈逆向运作,如:
取样原理方程式:Fs/Ft = N/M
傅里叶频率计算方程式:Ff = Fs/N

一旦逆向快速傅里叶变换完成,每个时域的数据必须相互拼接,以此产生一个数组。该数组的尺寸大小相当于样品数乘以音频数。在这里,我们必须注意确保数组小于任意波形发生器的内存。

奥地利微电子公司为晶圆代工客户开发的线性调频测试中,最困难的是测试带宽最窄的滤波器,它的中心频率为40kHz,带宽约为80kHz。3dB点的测量精度需在5kHz之内。在这样的情况下,我们构建了一个线性调频器,它包含100个频率分辨率为1kHz的离散频率。线性调频信号初始频率为1kHz终止频率为100kHz(如图2)。